PSEUDOCODE
ARTICULATION-POINTS-DFS-VISIT(G,u)
dfn = dfn + 1
u.d = u.low = dfn
u.color = GRAY
for each v ∈ G.Adj[u]
if v.color == WHITE
v.π = u
DFS-VISIT(G,v)
if u.d == 1
if G.Adj[u].size >= 2 AND v.low > u.d
articPointsList.push_front(u)
else if v.low >= u.d
articPointsList.push_front(u)
u.low = min(u.low, v.low)
else if u.π != v
u.low = min(u.low, v.d)
u.color = BLACK
C++ Code
#include <cstdio>
#include <algorithm>
#include <iostream>
#include <vector>
#include <list>
#include <limits>
#define MAX 101
using namespace std;
enum colors {BLACK, WHITE, GRAY};
int color[MAX], d[MAX], p[MAX], f[MAX], low[MAX], t, vertex, edge;
int NIL = numeric_limits<int>::min();
bool backEdge[MAX][MAX];
list<int> articPoints;
list<int>::iterator it;
void ARTICULATION_POINTS(vector<int>[]);
void DFS(vector<int>[]);
void DFS_VISIT(vector<int>[],int);
int main(void)
{
//freopen("articpoints.txt", "r", stdin);
vector<int> adjList[MAX];
int u, v;
cin >> vertex >> edge;
for(int e=1; e<=edge; e++) {
cin >> u >> v;
adjList[u].push_back(v);
adjList[v].push_back(u);
}
ARTICULATION_POINTS(adjList);
for(it=articPoints.begin(); it != articPoints.end(); ++it) {
cout << *it << ends;
}
return 0;
}
void ARTICULATION_POINTS(vector<int> G[]) {
DFS(G);
articPoints.sort();
articPoints.unique();
}
void DFS(vector<int> G[]) {
for(int u=0; u<=vertex; u++) {
color[u] = WHITE;
p[u] = NIL;
}
t = 0;
for(int u=1; u<=vertex; u++) {
if(color[u] == WHITE) {
DFS_VISIT(G,u);
}
}
}
void DFS_VISIT(vector<int> G[], int u) {
t = t + 1;
d[u] = low[u] = t;
color[u] = GRAY;
for(int i=0; i<G[u].size(); i++) {
int v = G[u][i];
if(color[v] == WHITE) {
p[v] = u;
DFS_VISIT(G,v);
if(d[u] == 1) {
if(G[u].size() >= 2 && low[v] > d[u]) {
// special case for root
// root is an artic. point if there are two or more children
articPoints.push_front(u);
}
} else if(low[v] >= d[u]) {
articPoints.push_front(u);
}
low[u] = min(low[u],low[v]);
} else if(p[u] != v) {
low[u] = min(low[u],d[v]);
}
}
color[u] = BLACK;
t = t + 1;
f[u] = t;
}
Sample Input
19 26
1 2
1 4
2 3
2 5
2 7
2 8
3 4
3 10
3 9
5 6
5 7
5 8
7 8
8 11
8 13
11 12
11 14
11 16
11 17
12 13
12 19
12 18
14 15
14 16
14 17
16 17
Sample Output
2 3 5 8 11 12 14
Refference: Introduction to Algorithms - Thomas H. Cormen